Closed-Loop Adaptation for Robust Tracking
نویسندگان
چکیده
Model updating is a critical problem in tracking. Inaccurate extraction of the foreground and background information in model adaptation would cause the model to drift and degrade the tracking performance. The most direct but yet difficult solution to the drift problem is to obtain accurate boundaries of the target. We approach such a solution by proposing a novel closed-loop model adaptation framework based on the combination of matting and tracking. In our framework, the scribbles for matting are all automatically generated, which makes matting applicable in a tracking system. Meanwhile, accurate boundaries of the target can be obtained from matting results even when the target has large deformation. An effective model is further constructed and successfully updated based on such accurate boundaries. Extensive experiments show that our closed-loop adaptation scheme largely avoids model drift and significantly outperforms other discriminative tracking models as well as video matting approaches.
منابع مشابه
Robust Adaptive Fuzzy Sliding Mode Control of Permanent Magnet Stepper Motor with Unknown Parameters and Load Torque
In this paper, robust adaptive fuzzy sliding mode control is designed to control the Permanent Magnet (PM) stepper motor in the presence of model uncertainties and disturbances. In doing so, the nonlinear model is converted to canonical form, then, for designing the controller, the robust sliding mode control is designed to decrease the effects of uncertainties and disturbances. A class of fuzz...
متن کاملDesigning Robust Finite-Time Nonlinear Torques for a n-DOF Robot Manipulator with Uncertainties, Sector and Dead-Zone Input Nonlinearities
In this paper, a complete dynamical model is presented for an uncertain -DOF robot manipulator containing description of sector and dead-zone input nonlinearities. Next, robust finite-time tracking problem of desired trajectories is declared and formulated for the aforementioned robot manipulator. By defining innovative nonlinear sliding manifolds and developing the nonsingular terminal sliding...
متن کاملDesign of Robust Finite-Time Nonlinear Controllers for a 6-DOF Autonomous Underwater Vehicle for Path Tracking Objective
In this paper, kinematic and dynamic equations of a 6-DOF (Degrees Of Freedom) autonomous underwater vehicle (6-DOF AUV) are introduced and described completely. By developing the nonsingular terminal sliding mode control method, three separate groups of control inputs are proposed for the autonomous underwater vehicle subjected to uncertainties including parametric uncertainties, unmodeled dyn...
متن کاملA hybrid solution approach for a multi-objective closed-loop logistics network under uncertainty
The design of closed-loop logistics (forward and reverse logistics) has attracted growing attention with the stringent pressures of customer expectations, environmental concerns and economic factors. This paper considers a multi-product, multi-period and multi-objective closed-loop logistics network model with regard to facility expansion as a facility location–allocation problem, which more cl...
متن کاملDesign of An Integrated Robust Optimization Model for Closed-Loop Supply Chain and supplier and remanufacturing subcontractor selection
The development of optimization and mathematical models for closed loop supply chain (CLSC) design has attracted considerable interest over the past decades. However, the uncertainties that are inherent in the network design are challenging the capabilities of the developed tools. In CLSC Uncertainty in demand is major source of uncertainty. The aim of this paper, therefore, is to present a Rob...
متن کامل